
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 3326

Massive Graph Processing on Nanocomputers
Bryan Rainey and David F. Gleich

Department of Computer Science
Purdue University

West Lafayette, Indiana 47907–2107
Email: {raineyb,dgleich}@purdue.edu

Abstract—Many recently proposed graph-processing frame-
works utilize powerful computer clusters with dozens of cores
to process massive graphs. Their usability and flexibility often
come at a cost. We demonstrate that custom software written
for “nanocomputers,” including a credit-card-sized Raspberry
Pi, a low-cost ARM server, and an Intel Atom computer, can
process the same graphs. Our implementations of PageRank
and connected components stream graphs from external storage
while performing computation in the limited main memory on
these nanocomputers. The results show that a $100 computer
with an Intel Atom core can compute PageRank and connected
components on a 1.5-billion-edge Twitter graph as quickly as
graph-processing systems running on machines with up to 48
cores. As people continue to apply graph computations to large
datasets, this research suggests that there may be cost and energy
advantages to using nanocomputers.

I. INTRODUCTION

Recent developments in graph-processing frameworks allow
researchers to perform graph computations on large datasets
such as social networks, web crawls, and science-derived
networks. These systems offer usability and flexibility while
executing iterative graph-processing tasks like PageRank, con-
nected components, shortest paths, and community detection.
Graph-processing systems tend to run on powerful hardware
with dozens of processors, and they typically scale to graphs
with millions of nodes and billions of edges [1]–[11].

An entirely different trend in computing is the production
of so-called “nanocomputers” like the Raspberry Pi, a $35
computer the size of a credit card. Nanocomputers tend to
be budget friendly, and they draw significantly less power
than larger computers. Recent nanocomputers, such as the
$100, 2-by-3-inch Kangaroo with an Intel Atom core, are
effective as general-purpose personal computers. Our paper
begins with the following question: can we perform large-scale
graph computations on nanocomputers?

In our experiments, we successfully process billion-edge
graphs on the Raspberry Pi, Scaleway – an ARM-based cloud
server available for e 3 per month – and the Kangaroo. We
achieve running times comparable to several graph-processing
systems running on as many as 48 cores, which suggests
that the flexibility of such systems comes with a substantial
reduction in computational efficiency. In order to benchmark
the nanocomputers, we wrote custom implementations of two
standard graph-processing tasks: computing PageRank using
the power iteration and computing connected components
using label propagation. These two graph algorithms are

representative of several iterative graph procedures that stream
through the edges in a graph while performing computa-
tion [12]. Due to main memory constraints on nanocomputers,
we stream graphs from storage while performing computation.
We take advantage of the fact that all three of our nanocom-
puters have 4-core processors by partitioning graphs into
blocks and then dividing the blocks among multiple threads
of execution. Our experiments culminate in a performance
model that predicts the running times of graph computations
on nanocomputers within a factor of two based on input/output
bandwidth, memory bandwidth, and memory latency. Our
software is available online in the interest of reproducibility:

https://github.com/brainey421/badjgraph/

Like graph-processing platforms with dozens of cores, our
implementations of graph computations on nanocomputers
scale to social networks and web crawls with millions of nodes
and billions of edges. One of the reasons that nanocomputers
can process massive graphs is that many graph algorithms,
such as PageRank and connected components, scale linearly
with the number of edges. With linear algorithms, the com-
putational bottleneck is often simply reading the graph. The
authors of another graph-processing system, GraphChi, made
a similar observation in the context of microcomputers [7].
Nanocomputers offer input/output systems that are nearly
as fast as those of much larger computers, which leads to
reasonable edge-streaming performance on nanocomputers.
These results suggest that innovations in hardware may be
outpacing increases in the sizes of graphs that researchers are
analyzing.

In practice, we see potential advantages of using nanocom-
puters to support low-throughput but highly parallel work-
loads. Many real-world graph analysis scenarios include a bat-
tery of highly-related analysis routines on a given graph. For
example, a variety of clustering and classification tasks rely
on computing PageRank with multiple values of teleportation
coefficients and teleportation vectors [13], [14]. In this kind
of scenario, we can export a large graph from a production
system, preprocess it lightly, and then analyze the graph on
nanocomputers in several ways in parallel.

II. RELATED WORK

Many of the recently proposed graph-processing frame-
works are designed for flexibility first and scalability second.
This makes it easy to implement a variety of graph algorithms

3327

and quickly explore novel insights about graphs [1]–[11].
However, the flexibility and scalability of these systems often
come at a cost. McSherry, Isard, and Murray proposed a
simple metric to evaluate the performance of graph-processing
systems simply called COST, the Configuration that Outper-
forms a Single Thread [15]. The authors implemented standard
iterative graph algorithms on a 2014 laptop using a single
thread of execution. They demonstrated that the COST of
many graph-processing frameworks is often hundreds of cores,
if not unbounded – that is, in some cases, no configuration
of a graph-processing system can outperform one thread on a
standard laptop. Our work follows in this same line and shows
that even readily accessible nanocomputers have performance
that is comparable to, if not better than, many of these systems.

In response to the limitations of scalability on many
graph-processing systems, there is a growing number of in-
memory frameworks, including GraphChi [7], Ringo [8], Emp-
tyHeaded [9], Galois [10], and Ligra [11]. These systems at-
tempt to bring large-scale computation to single-node, shared-
memory architectures. The GraphChi system most closely
resembles our work. We share a similar goal: demonstrating
that large-scale graph computation is feasible and efficient on
small-scale hardware. The GraphChi system illustrated that
large-scale graph computation is possible on a Mac Mini
computer while retaining some of the flexibility of more highly
scalable systems. In our research, we show that simple im-
plementations of graph algorithms on nanocomputers perform
comparably to the GraphChi system.

III. BACKGROUND

We briefly review the two graph algorithms that we imple-
ment: the power iteration algorithm to compute PageRank [16]
and a label propagation algorithm to compute connected
components [17]. PageRank and connected components are
useful in benchmarking graph-processing systems because
they follow a common paradigm: maintain a piece of data
for each node in the graph, and during an iteration, update
each node’s data based on a function of its neighbors’ data.
This strategy of reading through all of the edges in a graph
and propagating information along those edges is common
to many standard graph algorithms from finding shortest
paths to detecting communities [12], [17], [18]. Not all graph
algorithms fit this paradigm, namely algorithms that involve
only a specific region of a graph or algorithms that require
random access to the edges in a graph. However, there are
often approximation algorithms for these tasks that do fit
this paradigm, such as approximate triangle counting [19].
Observing how a graph-processing system performs while
computing PageRank and connected components offers broad
insight into the bottlenecks of the system and its performance
relative to other systems.

A. PageRank

A common construction of the PageRank problem for a
graph G = (V,E) with n nodes is a linear system [20]. Let
A be the adjacency matrix of G, where Auv = 1 if and only

1: x(1) ← e/n
2: for k ← 1 to maxiter do
3: x(k+1) = 0
4: for all nodes u with out-degree δ do
5: for all edges (u, v) do
6: x

(k+1)
v ← x

(k+1)
v + αx

(k)
u /δ

7: end for
8: end for
9: ρ← 1− ‖x(k+1)‖1

10: x(k+1) ← x(k+1) + (ρ/n)e
11: Check convergence based on ‖x(k+1) − x(k)‖1
12: end for

Fig. 1. The power iteration algorithm to compute PageRank [16]. The three
parameters are α ∈ (0, 1), commonly set to 0.85; maxiter, the maximum
number of iterations; and ε, the convergence tolerance. During an iteration,
the algorithm updates the vector x(k+1) by propagating the data in x(k) along
every edge in E. The algorithm tests for convergence using the residual one-
norm, which for PageRank is equivalent to ‖x(k+1) − x(k)‖1. We detail the
parallelization in section IV-E.

if (u, v) ∈ E. Let d be the vector whose entries are the out-
degrees of the nodes in V . Let α ∈ (0, 1) be PageRank’s
teleportation parameter, commonly set to 0.85. The PageRank
linear system solves for the PageRank vector x:

(I− αP)x = (1− α)e/n, (1)

where I is the identity matrix, Puv = Avu/dv , and e is the
vector of all ones. The data in the PageRank vector x provides
a measure of importance for each node in V based purely on
the edges in E.

The power iteration algorithm in figure 1 computes the
PageRank vector. Line 1 initializes the PageRank scores in x(1)
to be uniform. During the kth iteration, the algorithm updates
x(k+1) by propagating the data in x(k) along every edge in E.
The algorithm in figure 1 is written to emphasize that every
iteration cycles through the edges in E and propagates data
along each edge, but lines 3–10 could be abbreviated:

x(k+1) ← αPx(k) + (1− α)e/n. (2)

After an iteration, the algorithm computes the residual one-
norm ‖x(k+1) − x(k)‖1 =

∑n
u=1 |x

(k+1)
u − x

(k)
u | to gauge

convergence.

B. Connected Components

A connected component in G is a subgraph in which every
pair of nodes is connected by some path of edges in E. The
connected components that we consider are weakly connected,
so the directions of the edges in E are not important.

The algorithm that we use to find the connected components
in a graph G is similar to the power iteration algorithm
that computes PageRank in that it also performs a linear
pass over the edges in the graph. The label propagation
algorithm in figure 2 begins by assigning every node a unique
label in the vector x. During the kth iteration, the algorithm
updates x by visiting every edge in E whose endpoints have
distinct labels and then propagating the minimum label to both

3328

1: for all nodes u do
2: xu ← u
3: end for
4: for k ← 1 to maxiter do
5: counter ← 0
6: for all edges (u, v) such that xu 6= xv do
7: xu, xv ← min(xu, xv)
8: Increment counter
9: end for

10: if counter = 0 then
11: break
12: end if
13: end for

Fig. 2. A label propagation algorithm to compute connected components [17].
The only parameter is maxiter, the maximum number of iterations. During
an iteration, the algorithm updates x by propagating the minimum label along
every edge in E. The algorithm tests for convergence by counting the number
of label propagations per iteration and terminating when there are none. We
detail the parallelization in section IV-E.

nodes. Meanwhile, it keeps track of how many propagations
occur during an iteration to gauge convergence. The algorithm
converges when all adjacent nodes share the same label, and
at that point, all nodes in a connected component will share
the same label unique to that component.

IV. METHODS

A. Hardware

Unlike typical graph-processing systems, we implement
graph algorithms on small, low-power computers, commonly
called “nanocomputers.” Their specifications are summarized
in table I. Both the Raspberry Pi and Scaleway use ARM
processors, and the Kangaroo comes with a low-power Intel
Atom processor. All of these processors have 4 cores. The pri-
mary constraints on these machines are input/output capacity,
main memory, and cache memory. Because the datasets in our
experiments are too large to fit in main memory, we rely on an
external hard disk drive for the Raspberry Pi, a remote solid-
state drive for Scaleway, and a local eMMC solid-state drive
for the Kangaroo. Therefore, it is possible that the bottleneck
of certain graph computations on nanocomputers is not the
speed of the processor but the speed at which the computer
can stream graphs from storage.

B. Graph Format

We store graphs in a binary format that mirrors the structure
of an adjacency list. It contains a simple header with the
number of nodes and edges. The remainder of the graph is
a list of nodes, where each node is specified by its out-degree
and a list of adjacent nodes, all 4-byte integers. This simple
format suffices because all of the graphs in our experiments
have fewer than 4 billion nodes. The format makes it straight-
forward to implement many iterative graph algorithms that
require the degree of a node for each update.

TABLE I
HARDWARE SPECIFICATIONS FOR THE THREE SMALL, LOW-POWER
COMPUTERS IN OUR EXPERIMENTS, COMMONLY REFERRED TO AS

“NANOCOMPUTERS.” THE PRIMARY LIMITATIONS ON THESE COMPUTERS
ARE I/O CAPACITY, MAIN MEMORY, AND CACHE MEMORY.

Raspberry Pi 2 Scaleway Server Kangaroo

$35 e 2.99/month $99.99
4-core ARMv7 4-core ARMv7 4-core Intel Atom
1GB RAM 2GB RAM 2GB RAM
2TB HDD ($89.99) 50GB SSD 32GB SSD

We chose this simple format after attempting to use data
compressed using the WebGraph framework [21]. Our bench-
marks showed that WebGraph’s compression schemes were
too slow to offset the decrease in I/O bandwidth. In order
to test the cost of decompression, we ran a single-threaded
implementation of the power iteration algorithm to compute
PageRank on both WebGraph’s compressed graphs and our
decompressed graphs. We began by running the algorithm on a
200-million-edge graph of Hollywood actors on the two ARM
nanocomputers. One iteration of PageRank on the Raspberry
Pi took 58 seconds on the compressed graph, compared to 33
seconds on the decompressed graph. Scaleway saw a similar
speedup from 39 seconds to 11 seconds. We also ran an
iteration of the algorithm on a 1.5-billion-edge Twitter graph
on the Kangaroo, which took 355 seconds on the compressed
graph and 76 seconds on the decompressed graph.

To facilitate parallel computation, we split the graph file
into several blocks of maximum size 16MB, large enough to
accommodate the node with the greatest out-degree in our
experiments, which is 3 million. We ensure that the block
partitions do not split up a particular node’s information
about its out-degree and neighbors. For example, splitting a
graph into, say, 100 blocks would allow 4 threads to perform
simultaneous computation on 25 blocks each.

C. Datasets

Most of the datasets in our experiments come from the
Laboratory for Web Algorithmics at the University of Milan.
They provide compressed social networks and web crawls by
utilizing compression techniques from the WebGraph frame-
work [21] and by utilizing a label propagation clustering tool
that permutes the nodes in a graph to improve locality [22].
For the web crawls, they group websites by host to improve
locality and compression without using the clustering tool [23].

While we take advantage of WebGraph’s reordered datasets,
we convert them into the decompressed binary format de-
scribed above, which eliminates the cost of decompression on
low-power processors. Overall, the preprocessing in our exper-
iments consists solely of converting the data into the binary
format, which is fast even on nanocomputers. For instance, the
Kangaroo can convert the 1.5-billion-edge Twitter graph into
the binary format in roughly 5 minutes. As mentioned in the
introduction, many of the graphs that researchers analyze arise
from dumps from a production system, and analysts often run

3329

algorithms like PageRank or connected components multiple
times on graphs with slightly different parameters or subsets
of edges. Therefore, a small amount of preprocessing on these
graphs is a minimal cost.

D. Implementation

Our custom software, written in C and available at the
link in section I, is designed to process graphs quickly on
nanocomputers. Both algorithms that we implement maintain
vectors of length n in main memory. The PageRank algorithm
in figure 1 maintains a sequence of vectors {x(k)}, but our
implementation maintains only two vectors during an iteration:
the current vector x(k) and the next vector x(k+1). The
connected components algorithm in figure 2 maintains only
one vector x. Each entry in these vectors consumes 4 bytes
of memory: for the PageRank algorithm, the entries are 4-
byte floating-point numbers, and for the connected components
algorithm, the entries are 4-byte unsigned integers. In our
experiments, we restrict ourselves to graphs whose vectors fit
in main memory on the nanocomputers, which still allows us
to analyze massive web crawls and social networks like Twitter
and Friendster.

E. Parallelization

The Raspberry Pi, Scaleway, and the Kangaroo all have 4-
core processors, which we utilize to parallelize computation
among multiple threads of execution. The graph-processing
tasks that we consider are algorithms that propagate informa-
tion along every edge in a graph, and the order of the edges
is not important. Therefore, we can parallelize the sections
of these algorithms that loop through the edges in a graph.
The parallelizable loops of the algorithms are lines 4–8 in
figure 1, and lines 6–9 in figure 2. We utilize the OpenMP
API to divide the iterations of these loops among any number
of threads [24].

In order to ensure that no two threads simultaneously
update an entry in a vector, we can make the update steps
atomic using OpenMP’s built-in primitive. However, recent
research has considered eliminating thread safety to decrease
the running times of certain algorithms. For example, HOG-
WILD! is a framework for parallelizing stochastic gradient
descent without using locks [25]. Although HOGWILD! still
assumes that its updates are atomic, Avron, Druinsky, and
Gupta explored eliminating atomic updates in their linear
system solver for symmetric, positive-definite matrices [26].
Avron et al. observed only a slightly worse convergence rate
without atomicity and no significant difference in running
time. Since we do observe better running times after removing
atomicity, we argue below that eliminating atomic updates
only marginally affects the convergence of our PageRank
algorithm, and that atomic updates are not necessary for our
connected components algorithm.

For our PageRank algorithm, the potential problem with
eliminating atomicity is that simultaneous updates to x(k+1)

v on
line 6 of figure 1 can collide, which leads to skipped updates
to the vector x(k+1). Skipping updates to the PageRank vector

is not a new idea, and researchers have noted the benefits
of skipping updates to areas of the vector that have already
converged [27], [28]. Because our algorithm in figure 1 does
not access entries in x(k+1) sequentially – rather, it accesses
entries in x(k) sequentially – we expect relatively few update
collisions during an iteration. Also, we expect that within
a short number of iterations, all of the updates propagate
at least once. We verified these assumptions in some initial
microstudies of our code.

What is more problematic with eliminating atomic updates
from PageRank is gauging convergence. Using non-atomic
updates precludes us from utilizing a stopping criteria based
on the change in the PageRank vector during each iteration, a
convenient way to evaluate the residual. In order to guarantee
a specific solution error, it would be necessary to perform
a final check on the atomically computed residual, which is
proportional to the error for PageRank [20]. As performing this
check is uncommon, in this paper, we just run the algorithm
for a fixed number of iterations to compare our system with
other implementations of PageRank.

For our connected components algorithm, atomicity is not
an issue at all. The following argument demonstrates that
eliminating atomicity does not impede convergence. As with
PageRank, the potential problem is skipping updates to the
vector x on line 7 of figure 2. Consider the case when a thread
of execution skips an update to some entry xu. At that time, a
second thread must be successfully updating xu with another
value, so xu is guaranteed to have a new, smaller value after
the collision. Thus, during a given iteration, every entry of
x that requires an update will inherit a smaller value after
that iteration, although it might not be the smallest possible
value. Under the assumptions above, this property guarantees
that after enough iterations, all of the entries in x will reach
their minimum values, so the algorithm will still converge.
In this case, each thread should maintain independent copies
of the counter variable to merge upon conclusion of the
parallel loop over edges. Because atomicity is unnecessary for
convergence, we never use atomic updates in our connected
components experiments.

V. EXPERIMENTS

A. Datasets

Table II summarizes the details of the directed graphs
that we use in our experiments based on datasets from the
Labaratory for Web Algorithmics at the University of Milan
[21]–[23]. The Hollywood graph is a network of actors and
actresses from 2011. The two web crawls that we analyze are
the UK and SK graphs from 2005. The 1.5-billion-edge Twitter
graph is a social network from 2010, and the undirected 3.6-
billion-edge Friendster graph is the largest network we analyze
[29]. We include experiments on both the Twitter graph and
its transpose to explore the difference between graphs with
high out-degrees – such as the Twitter graph that models the
flow of information on social media – and graphs with high
in-degrees – such as the transposed Twitter graph that models
followers on social media.

3330

TABLE II
THE GRAPHS IN OUR EXPERIMENTS AND THEIR SIZES, INCLUDING THEIR

FILE SIZES IN OUR BINARY FORMAT [21]–[23], [29].

Graph Nodes Edges Size

hollywood-2011 2,180,759 228,985,632 0.8612GB
uk-2005 39,459,925 936,364,282 3.635GB
twitter-2010 41,652,230 1,468,365,182 5.625GB
sk-2005 50,636,154 1,949,412,601 7.451GB
com-friendster 65,608,366 3,612,134,270 13.70GB

TABLE III
THE SPEED AT WHICH EACH NANOCOMPUTER STREAMS GRAPHS FROM

STORAGE. THE RASPBERRY PI STREAMS GRAPHS AT 23 MBPS,
SCALEWAY AT 110 MBPS, AND THE KANGAROO AT 150 MBPS.

Graph Raspberry Pi Scaleway Kangaroo

uk-2005 164 s 39 s 25 s
twitter-2010 244 s 53 s 38 s
sk-2005 324 s 74 s 50 s
com-friendster 600 s 127 s 93 s

B. Graph Streaming

In order to understand the baseline performance of
nanocomputers on massive graph computations, we begin by
measuring the speed at which these computers can stream
all of the edges in a graph from storage. The Raspberry Pi
streams graphs from an external hard disk drive connected via
USB2.0; Scaleway remotely accesses a solid-state drive via
1GbE; and the Kangaroo has a local eMMC solid-state drive.
The results in table III show that the Raspberry Pi streams
graphs at an average speed of 23 MBps, despite the fact that
USB2.0 theoretically supports 60 MBps – we suspect the half-
duplex nature of the USB2.0 protocol was responsible for most
of the performance decrease. Scaleway streams graphs from its
SSD at 110 MBps, which nearly reaches the limit of its 1GbE
connection, and the Kangaroo has the fastest streaming speed
at 150 MBps. Both graph algorithms that we consider invoke
this graph-streaming procedure, so these measurements form a
baseline for the performance of the graph computations in the
subsequent sections. For example, 20 iterations of PageRank
on the Twitter graph must take at least 4880 seconds on the
Raspberry Pi, compared to 760 seconds on the Kangaroo.

C. PageRank With Atomic Updates

The graph-processing tasks that we implement are the power
iteration algorithm in figure 1 to compute PageRank and the
label propagation algorithm in figure 2 to compute connected
components. For all of these experiments, we use 8 threads to
take advantage of the 4 cores on each of the nanocomputers
and to ensure that every thread is either streaming the graph or
performing computation. Our results show that nanocomputers
can compute PageRank and connected components on billion-
edge graphs in a matter of minutes.

The first implementation that we consider is the thread-
safe power iteration algorithm, which uses atomic updates to
protect the PageRank vector x, so the algorithm is guaranteed

to converge even with multiple threads. We choose the most
common value for the parameter α = 0.85. Table IV lists
the running times for 20 iterations of PageRank, and figure 3
shows the scalability of the implementation. We report running
times for both the Twitter graph and the transposed Twitter
graph. Although the two graphs are the same size, PageRank
runs more quickly on the transposed graph, which suggests
that the running time of PageRank does not depend only on the
size of a graph. The Raspberry Pi computes PageRank roughly
at the rate at which the computer streams graphs from storage,
or around 10% slower, which suggests that the Raspberry Pi
is bottlenecked by input/output bandwidth. We explore the
bottlenecks on all three computers in the performance model
in section V-E.

D. Graph Algorithms Without Atomic Updates

In section IV-E, we justified anecdotally that eliminating
atomic updates from PageRank computation only marginally
affects convergence. Table V shows the running times of 20
iterations of PageRank with non-atomic updates, and figure
4 shows how the implementation scales with graph size.
In most cases, eliminating atomicity decreases the running
time of PageRank. However, using non-atomic updates rather
than atomic updates does not affect the speed at which the
computers read graphs from storage, so we would expect
that eliminating atomicity is more effective at increasing
computation speed only for experiments that are not already
bottlenecked on reading graphs from storage. Indeed, the most
drastic reductions in running time from table IV to table V
are on Scaleway and the Kangaroo. As with the thread-safe
PageRank computation, the Raspberry Pi is bottlenecked on
input/output, which we discuss further in section V-E.

We demonstrate empirically that removing atomicity from
the updates to the PageRank vector only marginally affects
the convergence of the algorithm. Figure 5 shows the rel-
ative difference in the errors of the thread-safe and thread-
unsafe implementations of PageRank for each graph. After
20 iterations, the transposed Twitter graph has the largest
increase in error after eliminating atomicity at roughly 4
percent. To put these results into context, the errors of the
two implementations are of the same order of magnitude and
are identical in the first few significant digits. One possible
explanation of why the difference abruptly increases during the
last few iterations is that the nodes whose PageRank values
have not yet converged are the same nodes that are likely
to experience update collisions after eliminating atomicity.
Regardless, the fact that the errors of the two implementations
are nearly the same suggests that eliminating atomicity does
not strongly impact the convergence of the power iteration.

In addition to PageRank, we implement the label prop-
agation algorithm to compute connected components. As
described in section IV-E, eliminating atomicity from the
algorithm does not affect its convergence. We run as many
iterations as necessary for the algorithm to converge. The run-
ning times for connected components are listed in table VI and
visualized in figure 6. As with PageRank, the Twitter graph,

3331

TABLE IV
RUNNING TIMES OF THE THREAD-SAFE IMPLEMENTATION OF 20 POWER ITERATIONS TO COMPUTE PAGERANK, INCLUDING THE PERCENT SLOWDOWN

COMPARED TO THE GRAPH-STREAMING TIME.

Graph Raspberry Pi Scaleway Kangaroo
Time Slowdown Time Slowdown Time Slowdown

hollywood-2011 779 s 2.5% 90 s 310% 74 s 490%
uk-2005 3353 s 2.2% 775 s -0.64% 512 s 2.4%
twitter-2010 5518 s 13% 2081 s 96% 1949 s 160%
twitter-2010-t* 5472 s 12% 1897 s 79% 1525 s 100%
sk-2005 6499 s 0.29% 1436 s -3.0% 1017 s 1.7%
com-friendster 14318 s 19% 6837 s 170% 6632 s 260%

*We process both the Twitter graph and the transposed Twitter graph.

0 1 2 3 4

x 10
9

0

5000

10000

15000

Problem size (nodes + edges)

T
im

e
 (

s
)

Raspberry Pi

Scaleway

Kangaroo

0 1 2 3 4
0

5

10

15

Problem size relative to UK

T

im
e

 r
e

la
ti
v
e

 t
o

 U
K Raspberry Pi

Scaleway

Kangaroo

Fig. 3. The scalability of the thread-safe implementation of 20 power iterations to compute PageRank. The plot on the left shows the running times in
seconds, and plot on the right shows the running times relative to the UK graph.

TABLE V
RUNNING TIMES OF THE THREAD-UNSAFE IMPLEMENTATION OF 20 POWER ITERATIONS TO COMPUTE PAGERANK, INCLUDING THE PERCENT

SLOWDOWN COMPARED TO THE GRAPH-STREAMING TIME.

Graph Raspberry Pi Scaleway Kangaroo
Time Slowdown Time Slowdown Time Slowdown

hollywood-2011 778 s 2.4% 63 s 190% 39 s 210%
uk-2005 3350 s 2.1% 707 s 9.4% 499 s 2.4%
twitter-2010 5516 s 13% 2008 s 89% 1391 s 83%
twitter-2010-t 5323 s 9.1% 1772 s 67% 1213 s 60%
sk-2005 6491 s 0.17% 1434 s -3.1% 1010 s 1.0%
com-friendster 14425 s 20% 6699 s 160% 4086 s 120%

0 1 2 3 4

x 10
9

0

5000

10000

15000

Problem size (nodes + edges)

T
im

e
 (

s
)

Raspberry Pi

Scaleway

Kangaroo

0 1 2 3 4
0

2

4

6

8

10

Problem size relative to UK

T
im

e
 r

e
la

ti
v
e

 t
o

 U
K Raspberry Pi

Scaleway

Kangaroo

Fig. 4. The scalability of the thread-unsafe implementation of 20 power iterations to compute PageRank. The plot on the left shows the running times in
seconds, and plot on the right shows the running times relative to the UK graph.

3332

16 17 18 19 20
0.01

0.02

0.03

0.04

Iteration

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 i
n

 e
rr

o
r

(a) hollywood-2011

16 17 18 19 20
−0.04

−0.02

0

0.02

0.04

0.06

Iteration

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 i
n

 e
rr

o
r

(b) uk-2005

16 17 18 19 20
2

4

6

8

10
x 10

−3

Iteration

R
e

la
ti
v
e

 d
if
fe

re
n
c
e

 i
n
 e

rr
o

r

(c) twitter-2010

16 17 18 19 20
−0.02

0

0.02

0.04

0.06

Iteration

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 i
n

 e
rr

o
r

(d) twitter-2010-t

16 17 18 19 20
−1

0

1

2
x 10

−3

Iteration

R
e

la
ti
v
e

 d
if
fe

re
n

c
e
 i
n

 e
rr

o
r

(e) sk-2005

16 17 18 19 20
−5

0

5

10

15
x 10

−5

Iteration

R
e

la
ti
v
e

 d
if
fe

re
n

c
e
 i
n

 e
rr

o
r

(f) com-friendster

Fig. 5. For each graph, the increase in error incurred by eliminating thread safety from the power iteration algorithm to compute PageRank. These results
show that the errors have the same order of magnitude and are identical in the first few significant digits. For iterations 16 through 20, we plot the relative
difference in the errors ‖x(k) − x‖1 of the thread-safe and thread-unsafe implementations. We estimate x using x(40) in the thread-safe implementation. The
transposed Twitter graph in plot 5d shows the largest increase in error after eliminating atomicity at only 4 percent.

which requires 7 iterations for convergence, generally takes
longer to process than the transposed Twitter graph, which
requires 6 iterations for convergence. Again, this discrepancy
suggests that computation speed does not depend solely on the
size of a graph, a major theme of our performance model.

E. Performance Model

In our performance model, we explore three potential bot-
tlenecks of graph processing on nanocomputers: input/output
bandwidth, memory bandwidth, and memory latency. As
mentioned in table III, the I/O bandwidths are around 23
MBps on the Raspberry Pi, 110 MBps on Scaleway, and
150 MBps on the Kangaroo. (These are the parameters β1
in the model.) Moreover, we estimate that the Raspberry Pi
and Scaleway, both of which have a cache line size of 32B,

have respective memory bandwidths of 810 MBps and 400
MBps; the Kangaroo, which has a cache line size of 64B, has a
memory bandwidth of about 2100 MBps. (The parameter β2 is
the memory bandwidth, and C is the cache line size.) Finally,
the memory latency for random accesses to the vectors in our
experiments is roughly 250 ns on the Raspberry Pi, 130 ns
on Scaleway, and 150 ns on the Kangaroo (the parameter L).
The streaming speed was estimated by our software, and the
memory parameters were determined via tinymembench [30].

In our experiments, we observe that the running time of
a graph algorithm depends not only on a graph’s size but
also on its structure. The graph algorithms in figures 1 and
2 randomly access entries in a vector based on the endpoints
of the edges in a graph. Some random memory accesses are
more costly than others, especially remote memory accesses

3333

TABLE VI
RUNNING TIMES OF THE LABEL PROPAGATION ALGORITHM TO COMPUTE CONNECTED COMPONENTS, INCLUDING THE PERCENT SLOWDOWN COMPARED

TO THE GRAPH-STREAMING TIME. EACH GRAPH TAKES A DIFFERENT NUMBER OF ITERATIONS TO CONVERGE.

Graph (Iterations) Raspberry Pi Scaleway Kangaroo
Time Slowdown Time Slowdown Time Slowdown

hollywood-2011 (4) 193 s 38% 8.9 s 100% 5.2 s 110%
uk-2005 (11) 1816 s 0.67% 420 s -2.1% 270 s -1.8%
twitter-2010 (7) 1841 s 7.8% 490 s 32% 298 s 12%
twitter-2010-t (6) 1586 s 8.3% 401 s 26% 240 s 5.3%
sk-2005 (13) 4205 s -0.17% 995 s 3.4% 649 s -0.15%
com-friendster (7) 5350 s 27% 1289 s 45% 938 s 44%

0 1 2 3 4

x 10
9

0

2000

4000

6000

Problem size (nodes + edges)

T
im

e
 (

s
)

Raspberry Pi

Scaleway

Kangaroo

0 1 2 3 4
0

1

2

3

4

Problem size relative to UK

T
im

e
 r

e
la

ti
v
e

 t
o

 U
K Raspberry Pi

Scaleway

Kangaroo

Fig. 6. The scalability of the label propagation algorithm to compute connected components. The plot on the left shows the running times in seconds, and
plot on the right shows the running times relative to the UK graph.

TABLE VII
PREDICTED RUNNING TIMES TO COMPUTE 20 ITERATIONS OF PAGERANK BASED ON OUR PERFORMANCE MODEL, INCLUDING THE PERCENT OF THE

ACTUAL RUNNING TIME OF 20 ITERATIONS OF PAGERANK WITHOUT ATOMIC UPDATES. “REMOTE ACCESSES” IS THE NUMBER OF MEMORY ACCESSES
OUTSIDE OF AN APPROXIMATE L1 CACHE REGION.

Graph Remote Accesses Raspberry Pi Scaleway Kangaroo
Prediction Percent of Actual Prediction Percent of Actual Prediction Percent of Actual

hollywood-2011 8.7% 766 s 98% 36 s* 57% 48 s* 120%
uk-2005 3.7% 3237 s 97% 677 s 96% 496 s 99%
twitter-2010 35% 5008 s 91% 1336 s 67% 1542 s 110%
twitter-2010-t 34% 5008 s 94% 1298 s 73% 1498 s 120%
sk-2005 7.9% 6635 s 100% 1387 s 97% 1017 s 100%
com-friendster 85% 15351 s 110% 7983 s 120% 9211 s 230%**

*Because the Hollywood graph is relatively small and fits in main memory on Scaleway and the Kangaroo, the I/O bandwidth bottleneck is not part of the
prediction and the memory latency values are smaller (90 ns and 120 ns, respectively). **The performance model vastly overestimates the running time of
PageRank on the Friendster graph on the Kangaroo; we suspect that the structure of the remote accesses on the Friendster graph is more complex than the
structure of the other graphs.

that are far away from the previous memory accesses. In our
performance model, we measure the percentage of remote
memory accesses required for each graph – that is, we count
how many memory accesses are a distance of at least 16KB
from the previous memory access, based on the L1 cache size
of a typical nanocomputer (the parameter R). While some
graphs require few remote memory accesses, including the
Hollywood graph (8.7%), the UK web crawl (3.7%), and the
SK web crawl (7.9%), other graphs require more, including
the Twitter graph (35%), the transposed Twitter graph (34%),
and the Friendster graph (85%).

For one iteration of our graph algorithms, we need to stream

edges over the I/O system, handle the memory traffic due
to remote fetches, and account for the memory latency of
those fetches. We expect one of these three factors to be the
bottleneck. Thus, our performance model predicts the running
time T of one iteration of PageRank or connected components
based on the the nanocomputer and the graph:

T = max

{
S

β1
,
mRC

β2
,mRL

}
, (3)

where S is the size of the graph in binary format, β1 is the
I/O bandwidth, m is the number of edges, R is the percentage
of remote memory accesses, C is the cache line size, β2 is the

3334

TABLE VIII
COMPARISONS OF RUNNING TIMES TO COMPUTE 20 ITERATIONS OF

PAGERANK ON THE TWITTER GRAPH AMONG SEVERAL
GRAPH-PROCESSING SYSTEMS [1]–[10].

System Cores Memory PageRank

Raspberry Pi 4 1GB 5516 s
Scaleway 4 2GB 2008 s
Kangaroo 4 2GB 1391 s

GraphChi 2 8GB 3160 s
Stratosphere 16 192GB 2250 s
X-Stream 16 64GB 1488 s
Vertica 48 192GB 1287 s
Giraph 128 1088GB 596 s
GraphX 128 1088GB 419 s
GraphLab 128 1088GB 249 s
Ringo 80 1024GB 121 s
Galois 48 1024GB 90 s
EmptyHeaded 48 1024GB 77 s

TABLE IX
COMPARISONS OF RUNNING TIMES TO COMPUTE CONNECTED

COMPONENTS ON THE TWITTER GRAPH AMONG SEVERAL
GRAPH-PROCESSING SYSTEMS [1]–[6].

System Cores Memory Components

Raspberry Pi 4 1GB 1841 s
Scaleway 4 2GB 490 s
Kangaroo 4 2GB 298 s

X-Stream 16 64GB 1159 s
Stratosphere 16 192GB 950 s
Vertica 48 192GB 378 s
GraphX 128 1088GB 251 s
GraphLab 128 1088GB 242 s
Giraph 128 1088GB 200 s

memory bandwidth, and L is the memory latency. This model
predicts that the bottleneck is always either I/O bandwidth
or memory latency. It also predicts that on the Raspberry
Pi, the only graph bottlenecked by latency is the Friendster
graph, and on the other two nanocomputers, the only graphs
bottlenecked by I/O are the UK and SK web crawls. Table
VII lists our performance model’s predicted running times to
compute 20 iterations of PageRank and compares them to the
actual running times of PageRank without atomic updates. The
model generally predicts running times within a factor of two.

VI. SYSTEM COMPARISONS

A. Running Time

Many graph-processing systems report running times for
computing PageRank and connected components on the Twit-
ter graph, which allows us to compare the performance of these
systems directly with the performance of nanocomputers [1]–
[10]. The PageRank comparisons are in table VIII. In terms
of absolute runtimes, the nanocomputers are not competitive.
However, we note that only Galois and EmptyHeaded – both
recent, highly optimized in-memory systems – outperform the

Kangaroo on a per-core basis. Moreover, nanocomputers can
compute PageRank on billion-edge graphs roughly an order
of magnitude more slowly than most systems despite the vast
differences in available computational power.

The most similar graph-processing system to our work is
GraphChi, which reports results from a 2-core Mac Mini.
For comparison, we ran GraphChi’s C++ implementation of
PageRank on the Twitter graph with the Kangaroo. Using an
HDD rather than an SSD to store the Twitter graph in an edge-
list format, GraphChi took 762 seconds per iteration, whereas
our implementation, also using an HDD, took 266 seconds.
The distinguishing feature of our work is the utilization of
nanocomputers, and our software implementation seems to
outperform GraphChi on these small computer architectures.

Table IX shows the connected components comparisons.
Most in-memory graph-processing frameworks either omit
running times for connected components or perform algo-
rithms more optimized than the label propagation algorithm.
This comparison shows that nanocomputers can compute
connected components on billion-edge graphs at roughly the
same speed as many systems running on dozens of cores.

B. Energy Consumption

We use a Kill A Watt meter to measure the power consump-
tion of the Raspberry Pi and the Kangaroo. The maximum
power consumption of the Raspberry Pi with its external hard
drive was 7.0 W, and the maximum power consumption of
the Kangaroo was 9.3 W. While the Raspberry Pi consumes
the least power, the Kangaroo’s faster computation detailed in
table V makes it the most energy-efficient computer. Scaleway
does not report the power consumption of its servers, but
since its specifications in table I are comparable to the other
two nanocomputers, we expect that it shares the same energy
advantages as the other computers. Although graph-processing
systems do not report how much power their computer clus-
ters consume, energy is a legitimate cost of large-scale data
processing. The fact that our nanocomputers consume less
than 10 W while performing massive PageRank computation
suggests that energy efficiency is a significant advantage of
using nanocomputers to process graphs.

VII. DISCUSSION

These results show that simple, customized implementations
of various graph algorithms can achieve system-limited per-
formance on nanocomputers. To achieve better performance,
we would need to optimize our implementations further – such
as using fast integer encoding and decoding strategies [31] to
optimize I/O on the Raspberry Pi, improving matrix orderings
to improve locality [15], or improving algorithms to reduce
the total work [28].

That said, flexible graph-processing systems have several
distinct advantages over nanocomputers. First, their large
computer clusters have enough memory to store PageRank
and connected components vectors for exceptionally large
networks like the World Wide Web, so we expect that many of
these systems would vastly outperform nanocomputers while

3335

processing such graphs. Additionally, our implementations of
PageRank and connected components are customized, instead
of being realized as special instances of a more general pro-
cessing style. Moreover, while these two algorithms represent
a host of graph-processing tasks that require streaming through
all of the edges in a graph [12], they do not represent many
other algorithms that analyze only a certain region of a graph
or require random access to the edges in a graph.

Nonetheless, our results suggest that low-cost, energy-
efficient nanocomputers can perform large graph computa-
tions, and the running times of our implementations are
comparable to those of graph-processing systems running on
dozens of cores. Much of the experience gained in optimizing
computations on these low-power systems is likely to be
useful for extracting maximum performance out of various
subroutines in larger, heterogeneous parallel systems, which is
likely an increasingly important strategy for high-performance
computing systems. We suggest that the rate of innovation in
small, energy-efficient computers relative to increases in the
sizes of graphs that researchers analyze may be an important
factor in the future development of graph-processing systems
designed for processing a single graph in multiple ways.

ACKNOWLEDGMENTS

We would like to thank Nicole Eikmeier, Kyle Kloster, Huda
Nassar, Varun Vasudevan, and Nate Veldt for their careful
reading of an early draft. This work was supported by NSF
CAREER award CCF-1149756.

REFERENCES

[1] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “GraphX: Graph processing in a distributed dataflow frame-
work,” in Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation, Oct. 2014.

[2] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: A framework for machine learning
and data mining in the cloud,” in Proceedings of the VLDB Endowment,
vol. 5, no. 8, Apr. 2012, pp. 716–727.

[3] A. Ching and C. Kunz, “Giraph: Large-scale graph processing infras-
tructure on Hadoop,” in Proceedings of the Hadoop Summit, Jun. 2011.

[4] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the 24th
ACM Symposium on Operating Systems Principles, Nov. 2013, pp. 472–
488.

[5] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast
iterative data flows,” in Proceedings of the VLDB Endowment, vol. 5,
no. 11, Jul. 2012, pp. 1268–1279.

[6] A. Jindal, S. Madden, M. Castellanos, and M. Hsu, “Graph analytics
using the Vertica relational database,” arXiv, Dec. 2014, Available:
http://arxiv.org/abs/1412.5263.

[7] A. Kyrola, G. Bllelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation, Oct.
2012.

[8] Y. Perez, R. Sosic, A. Banerjee, R. Puttagunta, M. Raison, P. Shah,
and J. Leskovec, “Ringo: Iinteractive graph analytics on big-memory
machines,” in Proceedings of the ACM SIGMOD Conference, Jun. 2015.

[9] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré, “EmptyHeaded:
A relational engine for graph processing,” arXiv, vol. cs.DB, Mar.
2015, Available: http://arxiv.org/abs/1503.02368. [Online]. Available:
http://arxiv.org/abs/1503.02368

[10] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Proceedings of the 32nd Conference on Programming Language Design
and Implementation, Jun. 2011.

[11] J. Shun and G. E. Blelloch, “Ligra: A Lightweight graph processing
framework for shared memory,” in Proceedings of the 18th Symposium
on Principles and Practice of Parallel Programming, Feb. 2013, pp.
135–146.

[12] D. F. Gleich and M. W. Mahoney, “Mining large graphs,” in Handbook of
Big Data, ser. Handbooks of Modern Statistical Methods, P. Bühlmann,
P. Drineas, M. Kane, and M. van de Laan, Eds. CRC Press, 2016, pp.
191–220.

[13] A. Epasto, J. Feldman, S. Lattanzi, S. Lenoardi, and V. Mirrokni,
“Reduce and aggregate: Similarity ranking in mutli-categorical bipartite
graphs,” in Proceedings of the 23rd International Conference on World
Wide Web, Apr. 2014, pp. 349–360.

[14] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating web spam
with TrustRank,” in Proceedings of the 30th International Conference
on VLDB, Sep. 2004, pp. 576–587.

[15] F. McSherry, M. Isard, and D. G. Murray, “Scalability! But at what
COST?” in Proceedings of the 15th Workshop on Hot Topics in Oper-
ating Systems, May 2015.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford University, Tech. Rep.,
1998.

[17] U. Kang, C. E. Tsourakakis, and C. Faloustos, “PEGASUS: A peta-
scale graph mining system – implementation and observations,” in
Proceedings of the 9th IEEE International Conference on Data Mining,
Dec. 2009, pp. 229–238.

[18] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. SIAM, 2011.

[19] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algo-
rithm for triangle counting using the birthday paradox,” in Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Aug. 2013, pp. 589–597.

[20] D. F. Gleich, “PageRank beyond the Web,” SIAM Review, vol. 57, no. 3,
pp. 321–363, 2015.

[21] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression
techniques,” in Proceedings of the 13th International World Wide Web
Conference, May 2004, pp. 595–601.

[22] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th International World Wide Web
Conference, Apr. 2011, pp. 587–596.

[23] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler: A
scalable fully distributed web crawler,” Software: Practice & Experience,
vol. 34, no. 8, pp. 711–726, 2004.

[24] L. Dagum and R. Menon, “OpenMP: An industry-standard API for
shared-memory programming,” IEEE Computational Science and En-
gineering, vol. 5, no. 1, pp. 46–55, 1998.

[25] F. Niu, B. Recht, C. Re, and S. J. Wright, “HOGWILD!: A lock-free
approach to parallelizing stochastic gradient descent,” in Proceedings of
the 25th Conference on Neural Information Processing Systems, 2011.

[26] H. Avron, A. Druinsky, and A. Gupta, “Revisiting asynchronous linear
solvers: Provable convergence rate through randomization,” in Proceed-
ings of the 28th IEEE International Parallel and Distributed Processing
Symposium, May 2014.

[27] S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive methods for the
computation of PageRank,” Stanford University, Tech. Rep., 2003.

[28] F. McSherry, “A uniform approach to accelerated PageRank compu-
tation,” in Proceedings of the 14th International World Wide Web
Conference, May 2005, pp. 575–582.

[29] J. Yang and J. Leskovec, “Defining and evaluating network communi-
ties based on ground-truth,” in Proceedings of the 12th International
Conference on Data Mining, Dec. 2012, pp. 745–754.

[30] S. Siamashka, “tinymembench,” Available:
https://github.com/ssvb/tinymembench.

[31] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Software: Practice and Experience, vol. 45,
no. 1, pp. 1–29, 2015.

